3D Printed Electronics – the next disruptive technology?

A patent application published on the last day of 2014 could easily have gone unnoticed but I believe it could be one of the next major breakthroughs in printed electronics.  The application has the title PRINTED THREE-DIMENSIONAL (3D) FUNCTIONAL PART AND METHOD OF MAKING and can be viewed by clicking on the link: WO2014209994.  The technology has been developed in the Research labs of Professor Jennifer Lewis at Harvard University.  The Lewis Lab team have been working for some years on multiple technologies including 3d printing, conductive inks for printed electronics, composite materials and micro-batteries.   This patent application describes various embodiments of a 3D functional part, for example one of the paragraphs states:

A method of printing a 3D functional part comprises, according to another embodiment: forming one or more portions of a 3D structure using a 3D printing method; positioning at least one functional electronic device on an exposed surface of the one or more portions; and forming conductive interconnects to and from the at least one functional electronic device using a 3D printing method. The method may further comprise, in some embodiments, forming one or more additional portions of the 3D structure using a 3D printing method. The one or more additional portions of the 3D structure may at least partially cover the at least one functional electronic device.

The method uses a printer with at least 2 printheads so that you can co-print both a matrix material and a conductor.  Electronic components can be manually inserted while the 3D printing operation is temporarily halted and then overprinted to embed the device.  One of the advantages of a direct write printing action that can move in all three axes is that the functional electronic devices can be orientated at any angle in the 3d structure and the conductive filaments are not constrained to a planar pathway as is typical of PCB boards.  The reader can refer to the patent application for more details of the materials for the matrix and the conductive inks but better still I refer you to the spin out company Voxel8 that plans to release this 3D printed electronics platform towards the end of 2015.  The patent application has a priority date of 24 June 2013.  This is an impressive time from filing the technology to a commercial device.  The first announcement of the 3D printer was made at CES 2015 back in early January.

Their promotional website can be found here.  I have included an image of the printer along with one of the devices made on it.

printed device Voxel8Printer

Phil’s comments:

3D printing continues to be an exciting area with many opportunities for prototyping and with the improvement in print heads and materials the devices are becoming more robust to the point that 3D printed components are now as good as their traditionally made counterparts.  The technology described here allows embedded electronics to be included in the 3D printing process.  Voxel8 will leverage ink designs from the Lewis research group, including those that enable 3D printing of resistors, dielectrics, stretchable electronics and sensors, and even lithium ion batteries.  I expect to see a significant number of patent applications emerge as part of this patent family and then further new applications as the materials and processes are developed.

I would like to thank Arthur Berman who contacting me for an opinion on this technology which then prompted me to write the article.

Printed Electronics card with piezo-powered indicator

I came across a recently granted patent that describes a printed card such as a business card with a display that is powered by a built-in piezo power source. This is a neat printed electronics application that gets around the problem of needing a battery to operate any device such as an indicator or display printed on the substrate. Although there are “printed electronics” batteries they tend to require encapsulated electrolytes to fabricate them and so are not entirely compatible with low-cost printing processes.

The patent is US8959734 and was published on 24th Feb 2015. It has a priority date of 16th Dec 2010. Details of the inventors and assignee are summarised below along with the abstract:

Inventors: Daniel; Jurgen H. (San Francisco, CA), Ng; Tse Nga (Mountain View, CA)

Assignee: Palo Alto Research Center Incorporated (Palo Alto, CA)

Abstract

An interactive card or the like employs a piezoelectric charge generator (piezo-strip) for temporarily driving an indicator. The piezo-strip may be displaced (bent) in order to generate charge to drive the indicator. Printed electronic processes are utilized to produce the indicator and/or the piezoelectric charge generator. An indicator is formed on a substrate by way of a printed electronics process. A displaceable region of piezoelectric material associated with the said substrate is formed by way of a printed electronics process. Electrical interconnections are formed on said substrate by way of a printed electronics process. The electrical interconnections connecting said indicator and said first region of piezoelectric material such that displacement of said first region of piezoelectric material generates a voltage therein that is provided to said indicator in order to actuate said indicator and thereby indicate the displacement of said first region of piezoelectric material.

The drawings give a pretty good idea of the invention and its construction. I’ve reproduced two sets of figures below to show this but there are more in the patent that you can view.

Fig1_Fig2 Fig5_Fig6

FIG. 1 is an illustration of a display-capable business card with piezo-strip according to an embodiment of the present disclosure.

FIG. 2 is an illustration of the display-capable business card with piezo-strip according to FIG. 1, showing the deflection of the piezo-strip and the resulting actuation of an indicator.

FIG. 5 is a photograph of a display-capable business card with piezo-strip and template over an indicator according to another embodiment of the present disclosure.

FIG. 6 is a photograph of the components of the display-capable business card with piezo-strip and template over an indicator shown in FIG. 5.

Claim 1 provides the legal statement that defines the invention:

1. A method of forming an interactive card with indicator on a substrate, comprising: forming said indicator on said substrate by way of a printed electronics process; forming a displaceable region of piezoelectric material associated with said substrate by way of a printed electronics process; forming electrical interconnections on said substrate connecting said indicator and said first region of piezoelectric material such that displacement of said first region of piezoelectric material generates a voltage therein that is provided to said indicator in order to actuate said indicator and thereby indicate the displacement of said first region of piezoelectric material, said electrical interconnections formed by way of a printed electronics process, wherein said first region of piezoelectric material is formed over a piezo-strip region of said substrate; and partially disconnecting said piezo-strip region from said substrate in order to permit displacement of said piezo-strip region independently from the remainder of said substrate.

Phil’s comments:

Piezo technology does offer quite a few opportunities for where a brief amount of power is required to trigger a device. This patent describes one use illustrated above but also extends the ideas to other applications such as switches or sensors that can indicate if vibration or bending has happened. Another application detects liquid levels by sensing where the liquid moves a series of vertical flaps on the sensor by its swirling action. I have not seen any commercial applications of this but am aware of a Swiss company that uses the piezo effect to produce a keyboard and they recently demonstrated this integrated with one of Plastic Logic’s electrophoretic displays (see here).