How to generate a Patent Landscape

When you work in a particular technology area it is often useful to understand who else is working on the same technologies and who may be patenting or inventing aspects of the technology.  A patent landscape is the name given to a study of who holds these patents and the detailed understanding of trends in terms of numbers of patents granted; regions where the most patents are filed; understanding prior art and where potential gaps are for working on improvements or new features.  In addition, links between assignees and inventors (in particular any evidence of universities or research centres working with companies) can be very useful for finding collaborators or third parties who may be interested in joint research and development.

There are many organisations that provide this sort of information for a price and will provide a nice visual overview but when you are not really sure exactly what you are looking for it is much better to try out a few searches yourself and explore the landscape so that you know what you are up against and how complicated the landscape might be.

One organisation that provides this type of information together with some analysis is the World Intellectual Property Organization (WIPO) and, best of all, it is free!  The system is called PATENTSCOPE and is very simple to use.  It can be found at https://patentscope.wipo.int/search/en/search.jsf

Let’s now try and get a quick overview of the Internet of Things.  This is a really exciting new technology area where everyday items can connect via the internet to one another and interact in useful ways.

Open the link and in the simple search box type in the phrase “internet of things” using quotes to show that it is a phrase that we want to search on.  Rather than searching just on the Front Page select Any Field as shown below:

Simple Search

Click on search and the results immediately show.

Search results

You can see that there were 8,230 patent documents found from all the databases (by default we searched all the English language databases).  If you click on the Analysis bar it will open up a window where you can see at a glance which countries are filing patents, how many, who the top inventors and applicants are and what the timeline trend looks like.  You can also see the data graphically if you choose the various options in the window.  Some examples are shown below:

analysis view

graph view

The items in the table are all clickable so you can drill down to examine patents from any of the inventors or companies very quickly, or you could examine who first started filing in 2010.

The pie chart can be quite useful to see a breakdown of the main patent classification codes which give some idea of the technology areas covered.  An explanation of IPC and CPC codes can be found here: http://worldwide.espacenet.com/classification?locale=en_EP

pie chart

One problem with the data is that it is not standardised, for example you can see that Samsung appears under different names in the table so that you would need to add these together to get a proper feel for how many of the patent documents are owned by Samsung.  If you do this you find it is over 700, nearly 10% of the total.  Across all the patents you can see that the last 2 years accounts for around 75% of the total number.

If you wanted to explore the data in more detail you are allowed to download the results into an excel spreadsheet (10,000 records is the limit), however, you need to be logged in with a free account to be able to do this.  From the spreadsheet you can unravel a lot more detail about other companies and inventors filing, start to explore trends over time and look at granted patents.  In this dataset for example there are only 2.5% of the US patents actually granted, clear evidence that this is an emerging technology and there is quite a race to get the technology protected by patent rights.

I hope this brief overview has given you some idea of how to get a quick insight into the patent landscape of a particular technology area.  As always, do contact me if you have any questions or want a detailed landscape of your own technology area.

Update on Spray-on Solar PV

In a previous post I reported on a number of patent applications related to transparent solar panel technology that could be manufactured by a spray-on process.  This technology was being developed by Prof Xiaomei Jiang under a research agreement with New Energy Technologies Inc.  This company has now changed its name to Solar Window Technologies Inc. and there is much less evidence of the spray-on approach in their technical information suggesting that they are less confident that spraying will be a viable manufacturing route.

The patent applications have been going through examination and until quite recently there had been no granted patents emerging with the spray-on process as the key manufacturing method.  However, on 4 Aug 2015 the US20130255757 application was granted as US9099605 and as far as I am aware becomes the first granted patent with a spray-on process for PV panels.

Phil’s Comments:

I noticed that the first claim had to be modified before the examiner would allow it.  It has been somewhat narrowed in scope to include a 48h at 60°C heating step for the P3HT and PCBM before spraying multiple layers to a final thickness of between 200 and 300nm.  It was necessary to include this to avoid prior art found in the scientific literature which indicated a spray method but the layer needed to be thicker than 1.2 micron.  Other prior art also made mention of the heating requirements but failed to specify the layer thickness. Similarly, where layer thickness was specified in the prior art, it did not teach the heating steps were essential.

 

3D Printed Electronics – the next disruptive technology?

A patent application published on the last day of 2014 could easily have gone unnoticed but I believe it could be one of the next major breakthroughs in printed electronics.  The application has the title PRINTED THREE-DIMENSIONAL (3D) FUNCTIONAL PART AND METHOD OF MAKING and can be viewed by clicking on the link: WO2014209994.  The technology has been developed in the Research labs of Professor Jennifer Lewis at Harvard University.  The Lewis Lab team have been working for some years on multiple technologies including 3d printing, conductive inks for printed electronics, composite materials and micro-batteries.   This patent application describes various embodiments of a 3D functional part, for example one of the paragraphs states:

A method of printing a 3D functional part comprises, according to another embodiment: forming one or more portions of a 3D structure using a 3D printing method; positioning at least one functional electronic device on an exposed surface of the one or more portions; and forming conductive interconnects to and from the at least one functional electronic device using a 3D printing method. The method may further comprise, in some embodiments, forming one or more additional portions of the 3D structure using a 3D printing method. The one or more additional portions of the 3D structure may at least partially cover the at least one functional electronic device.

The method uses a printer with at least 2 printheads so that you can co-print both a matrix material and a conductor.  Electronic components can be manually inserted while the 3D printing operation is temporarily halted and then overprinted to embed the device.  One of the advantages of a direct write printing action that can move in all three axes is that the functional electronic devices can be orientated at any angle in the 3d structure and the conductive filaments are not constrained to a planar pathway as is typical of PCB boards.  The reader can refer to the patent application for more details of the materials for the matrix and the conductive inks but better still I refer you to the spin out company Voxel8 that plans to release this 3D printed electronics platform towards the end of 2015.  The patent application has a priority date of 24 June 2013.  This is an impressive time from filing the technology to a commercial device.  The first announcement of the 3D printer was made at CES 2015 back in early January.

Their promotional website can be found here.  I have included an image of the printer along with one of the devices made on it.

printed device Voxel8Printer

Phil’s comments:

3D printing continues to be an exciting area with many opportunities for prototyping and with the improvement in print heads and materials the devices are becoming more robust to the point that 3D printed components are now as good as their traditionally made counterparts.  The technology described here allows embedded electronics to be included in the 3D printing process.  Voxel8 will leverage ink designs from the Lewis research group, including those that enable 3D printing of resistors, dielectrics, stretchable electronics and sensors, and even lithium ion batteries.  I expect to see a significant number of patent applications emerge as part of this patent family and then further new applications as the materials and processes are developed.

I would like to thank Arthur Berman who contacting me for an opinion on this technology which then prompted me to write the article.

Printed Electronics card with piezo-powered indicator

I came across a recently granted patent that describes a printed card such as a business card with a display that is powered by a built-in piezo power source. This is a neat printed electronics application that gets around the problem of needing a battery to operate any device such as an indicator or display printed on the substrate. Although there are “printed electronics” batteries they tend to require encapsulated electrolytes to fabricate them and so are not entirely compatible with low-cost printing processes.

The patent is US8959734 and was published on 24th Feb 2015. It has a priority date of 16th Dec 2010. Details of the inventors and assignee are summarised below along with the abstract:

Inventors: Daniel; Jurgen H. (San Francisco, CA), Ng; Tse Nga (Mountain View, CA)

Assignee: Palo Alto Research Center Incorporated (Palo Alto, CA)

Abstract

An interactive card or the like employs a piezoelectric charge generator (piezo-strip) for temporarily driving an indicator. The piezo-strip may be displaced (bent) in order to generate charge to drive the indicator. Printed electronic processes are utilized to produce the indicator and/or the piezoelectric charge generator. An indicator is formed on a substrate by way of a printed electronics process. A displaceable region of piezoelectric material associated with the said substrate is formed by way of a printed electronics process. Electrical interconnections are formed on said substrate by way of a printed electronics process. The electrical interconnections connecting said indicator and said first region of piezoelectric material such that displacement of said first region of piezoelectric material generates a voltage therein that is provided to said indicator in order to actuate said indicator and thereby indicate the displacement of said first region of piezoelectric material.

The drawings give a pretty good idea of the invention and its construction. I’ve reproduced two sets of figures below to show this but there are more in the patent that you can view.

Fig1_Fig2 Fig5_Fig6

FIG. 1 is an illustration of a display-capable business card with piezo-strip according to an embodiment of the present disclosure.

FIG. 2 is an illustration of the display-capable business card with piezo-strip according to FIG. 1, showing the deflection of the piezo-strip and the resulting actuation of an indicator.

FIG. 5 is a photograph of a display-capable business card with piezo-strip and template over an indicator according to another embodiment of the present disclosure.

FIG. 6 is a photograph of the components of the display-capable business card with piezo-strip and template over an indicator shown in FIG. 5.

Claim 1 provides the legal statement that defines the invention:

1. A method of forming an interactive card with indicator on a substrate, comprising: forming said indicator on said substrate by way of a printed electronics process; forming a displaceable region of piezoelectric material associated with said substrate by way of a printed electronics process; forming electrical interconnections on said substrate connecting said indicator and said first region of piezoelectric material such that displacement of said first region of piezoelectric material generates a voltage therein that is provided to said indicator in order to actuate said indicator and thereby indicate the displacement of said first region of piezoelectric material, said electrical interconnections formed by way of a printed electronics process, wherein said first region of piezoelectric material is formed over a piezo-strip region of said substrate; and partially disconnecting said piezo-strip region from said substrate in order to permit displacement of said piezo-strip region independently from the remainder of said substrate.

Phil’s comments:

Piezo technology does offer quite a few opportunities for where a brief amount of power is required to trigger a device. This patent describes one use illustrated above but also extends the ideas to other applications such as switches or sensors that can indicate if vibration or bending has happened. Another application detects liquid levels by sensing where the liquid moves a series of vertical flaps on the sensor by its swirling action. I have not seen any commercial applications of this but am aware of a Swiss company that uses the piezo effect to produce a keyboard and they recently demonstrated this integrated with one of Plastic Logic’s electrophoretic displays (see here).

Aqueous Conductive Silver Ink

Printed electronics is continuing to grow as more and more applications are developed and commercialised.  One of the key stumbling blocks continues to be the practicalities of printing narrow conductive tracks and the ease of use of the materials and processes involved.  One of the key system components, often taken for granted,  is the ink.  The majority of conductive ink compositions in use today are solvent-based thick film systems designed for low speed screen printing.  Water based conductive inks and coatings offer significant ecological advantages over solvent-based compositions, as the latter release solvents into the atmosphere on drying.  Aqueous conductive inks, however, have so far not offered the high conductivity, or low electrical resistivity, achievable with solvent-based formulas.

Sun Chemical Corp. have just been granted a patent for an aqueous ink with high conductivity and good printing properties.  This invention more specifically relates to an aqueous conductive silver ink suitable for use in RFID and other electronic technologies. The composition is highly conductive and requires reduced drying energy. In addition, it may be applied to low cost substrates via high speed printing processes. The key components of the ink formulation include: (meth)acrylic copolymer or salt thereof; conductive particles; an anionic surface wetting agent; defoamer and water.  The first claim suggests the ink can be up to 80% water depending on the amount of the other ingredients.

The patent is US8709288 and it was issued on 29 April 2014.  The Inventors are Jason Rouse and Dave Klein.

The independent claims from the patent are listed below:

1. A method of forming a conductive pattern on a substrate comprising applying a conductive composition comprising (a) metallic silver conductive particles, (b) water soluble styrene/(meth)acrylic copolymer, (c) an anionic wetting agent, (d) defoamer and (e) 10 to 80% water, the composition providing a sheet resistance of less than 0.83 ohms/sq, on the substrate and drying the composition.
34. A method of forming a conductive pattern on a substrate comprising applying a conductive composition consisting essentially of (a) metallic silver conductive particles, (b) water soluble styrene/(meth)acrylic copolymer, (c) an anionic surfactant, (d) defoamer and (e) 10 to 80% water, the composition providing a sheet resistance of less than 0.83 ohms/sq, on the substrate and drying the composition.
37. A method of forming a conductive pattern on a substrate comprising applying a conductive composition consisting of (a) metallic conductive particles, (b) water soluble styrene/(meth)acrylic copolymer, (c) an anionic surfactant, (d) defoamer, (e) 10 to 80% water, and optionally another solvent, the composition providing a sheet resistance of less than 0.83 ohms/sq, on the substrate and drying the composition.

The differences above are subtle but important, claim 34 describes the composition with an anionic surfactant rather than a wetting agent, and claim 37 describes a more general formulation with any metallic conductive particle and optionally includes another solvent.  Each claim includes the requirement that the composition provides a resistance of less that 0.83 ohms/sq on the substrate.

 

Phil’s Comments:

Good to see that research into inks suitable for printed electronics is providing environmentally acceptable formulations.  Reducing solvents and also reducing the energy requirements for drying are all good directions for the ink design.  We sometimes forget the huge demand put upon the inks we use, for example they need good abrasion and chemical resistance when dried so that they are not easily scratched or wiped off during subsequent uses, they need to have proper rheology and substrate wetting properties to obtain good ink transfer and graphic reproduction. Additionally, the ink should possess good flexibility and thermal stability to withstand the physical deformation to which the substrate may be subjected.  Let’s remember the research that goes into the inks when we next see a printed electronics design in use!

 

“Thinking Ink” – allows printed packaging to interact with smartphones

A recent patent lawsuit filed by Touchpac Holdings against TouchBase Technologies Inc. has highlighted the US Patent US8497850 which is owned by Printechnologics GmbH (T+Ink).  Details of the lawsuit were reported by Printed Electronics World in their article on 18 Feb 2014.

The patent was granted on 30 July 2013 and describes the technology that T+Ink have developed and called Touchcode.  This is a highly secure printed conductive ink signature embedded in packaging, labels and other objects that a smartphone or other sensing device can detect through capacitive touch.  The patent provides some detail of the system which is defined in independent claim 22:

A system comprising: a. an information carrier comprising a dielectric and/or conductive pattern which encodes information, and wherein the information carrier (1) comprises a substrate (2) with a first dielectric coefficient ∈1 and a second material with a second dielectric coefficient ∈2, the second coefficient ∈2 being different from the first coefficient ∈1, or wherein the information carrier (1) comprises a substrate (2) with a first conductivity σ1 and a second material with a second conductivity σ2, the second conductivity σ2 being different from the first conductivity σ1, b. a detection device having a capacitive touch screen; the detection device decodes the information upon interaction between the information carrier and the touch screen, wherein the interaction is based on a difference in the dielectric coefficient and/or the conductivity of the pattern, wherein the interaction is induced by relative motion between the information carrier and the touch screen.

A more visual explanation can be found on the T+Ink Touchcode website.  As explained on the website, Touchcode is an invisible electronic code printed on paper, cardboard, film or labels. Just put the product on the display of your smartphone/tablet/multitouch device to read the data.  In this way you can add interactivity to just about any product.  The system is similar to QR codes, barcodes or other tags but does not require activating a camera app on the phone or tablet to work.

Metal Nanoparticle Conductive inks Patented by Aculon Inc

Aculon Inc. were granted a patent on 15 October for “Electroconductive Inks made with Metallic Nanoparticles”.  Aculon are well known for their surface coatings using nanoparticle technology, featuring improved adhesion to a wide range of surfaces and adding functionality for numerous applications including printed electronics.  It is therefore no surprise that conductive inks are described with advantageous adhesion to a variety of substrates including silicon, glass and plastic.

The granted patent is US8558117 and the claims are quite broad but require the inks to have an omega substituted organophosphoric acid, this is the added ingredient which helps to improve the adhesion.

The first 10 claims are shown below:

What is claimed is: 1. An electroconductive ink comprising: (a) a dispersion of metal nanoparticles with a dispersant on the surface of the metal nanoparticles and as a separate component, (b) an omega substituted organophosphorus acid; the metal nanoparticles being present in amounts of 5 to 80 percent by weight and the omega substituted organophosphorus acid being present in amounts of 0.0005 to 5 percent by weight; the percentages by weight being based on total weight of the electroconductive ink.

2. The composition of claim 1 in which the metal is selected from copper, silver, palladium, gold or any combination thereof.

3. The composition of claim 2 in which the metal is silver.

4. The composition of claim 3 in which the dispersant is an organic carboxylic acid.

5. The composition of claim 4 in which the organocarboxylic acid contains from 4 to 36 carbon atoms.

6. The composition of claim 1 in which the metal nanoparticles have a particle size of 1 to 500 nanometers.

7. The composition of claim 1 in which the dispersion contains an organic diluent.

8. The composition of claim 7 in which the organic diluent is selected from hydrocarbons, alcohols, esters and ketones.

9. The composition of claim 1 in which the organo groups of the organophosphorus acid have omega substituted functional groups.

10. The composition of claim 1 in which the omega substituted functional groups are selected from phosphonic acid, carboxylic acid, hydroxyl, thiol and amine including various combinations thereof.

Phil’s Comments:

I have reported on a number of conductive ink patents over the past year or two and a common theme running through them is the need for good adhesion along with their conductivity.  The patents generally differ in the description of the adhesion promoting substances used in the nanoparticle inks and on other improved properties that enhance their application for printed electronics.  Successful conductive ink formulations are essential for printed electronics to become a mainstream technology for building new devices and specialist inks with patented formulations will continue to dominate the scene for a number of years before generic formulations will be cheaply available as we see for conventional inkjet printing.